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INTRODUCTION

This paper is concerned with the approximation properties of certain
spaces of compact linear operators in the corresponding spaces of bounded
linear operators. Much has been written about this in the case of operators
acting on a Hilbert space. For these spaces, the compact operators have been
shown to be an M-ideal in the corresponding space of bounded operators.

The concept of an M-ideal has been introduced and investigated in the
fundamental paper [1] of Alfsen and Etfros. According to this paper a closed
subspace M of a Banach space X is an M-ideal if there is a linear projection P
on the dual space X* onto M.t, the annihilator of M, such that for every
U E x* the equality II u II = II Pu II + II u - Pu II holds. According to [1] an
important characterizing property of M-ideals is the "3 balls" property,
namely: if B i , i = 1,2, 3 are open balls in X such that B1 () B2 () B3 =1= 0
and M () B i =1= 0 for i = 1,2,3, then ni Bi () M =1= 0. The approximation
properties of M-ideals have been"studied in [8]. We mention here that, in
particular, all M-ideals are proximinal.

Due in particular to this last fact much of our attention will be focused on
the question whether the space of compact operators is an M-ideal in the
corresponding space of bounded linear operators.

This paper is divided into three sections. In the first section the approxi
mation properties of K(lp), the space of compact operators on lp in B(lp), the
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space of bounded operators,are studied for 1 ~ p ~ 00. Although it is known
that K(/p) is an M-ideal in B(lp) for 1 < p < 00 and hence, as mentioned
above, K(/p) must be proximinal in B(lp), we give a constructive proof of this
fact. Furthermore, it is shown that K(/I) is proximinal in B(/I) and that a
large class of operators on 100 have compact operator nearest points.

The following is an open and apparently quite difficult problem: classify
those Banach spaces X and Y for which K(X, Y) is a proximinal subspace
(or an M-ideal) in B(X, Y). Related to this question are the works ofFakhoury
and Hennefeld. In [4], Fakhoury showed that K(L1 , C(S» is proximinal in
B(L1 , C(S». In [5], Hennefeld, among other things, showed that K(co) is an
M-ideal in B(co)' Sections 2 and 3 deal with questions connected with the
work of these authors.

In Section 2, the proximinality of the compact operators from L 1 into any
separable uniformly rotund space in the corresponding space of bounded
operators is established, whereas, in Section 3, the compact operators with
range in certain spaces of continuous functions is seen to be an M-ideal in the
corresponding space of bounded operators.

At this time we would like to thank Professor r. D. Berg for his helpful
suggestions related to Section 1.

Throughout this article, B(x, R) will denote the open ball centered at x
having radius R. The metric projection of a vector x onto a subspace M will
be indicated by PM(x). B(X, Y) (resp. B(X» will designate the space of
bounded linear operators mapping the Banach space X into a Banach space
Y (resp. X into X) while K(X, Y) (resp. K(X» will denote the corresponding
space of compact operators. The restriction of an operator S to a subspace V
will be given by S I V and V (VI, ... , Vn ) will denote the linear span of Vi ,

i = 1, ... , n. Finally, two vectors in Iv will be called orthogonal, if they have
disjoint supports.

1. COMPACT OPERATOR ApPROXIMATION IN B(lv)

In this section, certain theorems on compact operator approximation in
B(/p) are proved. Special emphasis is placed on the approximation properties
of the compact operators for p = 1 or 00 since in these cases the compact
operators are not M-ideals [9, Theorem 6.2]. However, many approximation
properties analogous to the case 1 < P < 00 are seen to still hold.

Several authors have studied compact operator approximation in B(l2), for
example [3, 6, 7]. However, not much has been discussed for the case p =F 2.
It is known that for 1 < p < 00, K(lp) is proximinal in B(lp). This follows
from the fact that K(lp) is an M-ideal in B(lp) and that all M-ideals are
proximinal subspaces. The proof, as given in [1], is very nonconstructive.
There is a simple constructive proof that the compact operators are proxi
minal in B(l2) but this depends on spectral theory and the polar decomposi-
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tion of an operator. Both tools are unavailable in B(l1J) for general p. Never
theless the following theorem, although known, provides a new and construc
tive proof of the fact that K(/1J) is proximinal in B(l1J)'

THEOREM 1.1. K(l1J) is a proximinal subspace in B(/1J) for I < p < 00.

Proof Let T E B(l1J)\K(l1J) for any fixed p, I < p < 00 and set R
d(T, K(l1J», R > O. Without loss of generality one may assume that T is a
tri-block-diagonal operator with respect to the canonical basis {ei}f..l . To
see this, note that for any positive sequence {Si}f..l satisfying :L::l Si = S, the
basis {ei}f..l may be divided into a sequence of adjacent finite blocks increasing
in length so rapidly that the spaces Hi , say, spanned by successive blocks of
the en satisfy

and

so long as the space L is perpendicular to PH ,PH ,and PH ,where Pvi 1-1 i+1

denotes the orthogonal projection onto V. Now note that T minus the
tridiagonal part of the operator matrix, call it T, is a compact operator of
norm less than or equal to S. Thus attention may now be focused on T as it is
a compact perturbation of T.

The operator S defined by Seen) = anT(en) for sufficiently slowly in
creasing scalars an, an -- 1 provides the desired l' + K. The sequence
{ai}f..l will be defined by induction. Pick a1 > 0 to satisfy

II al1' II < R = d(1', K(l1J»'

Now assume n steps have been completed. The partially constructed operator
has the form

N

SN == " aiPELTPE..L,L, , ,
i~1

where E/ is V{e,,(i) , e,,(i)+l ,...,...} for some appropriate n(i). For sufficiently
large k, it is easily seen that

Now by construction II SN II < d(T, K(l1J»' To proceed with the induction,
select a SN+l so that

II SN II + SN+l < d(T, K(l1J»'

Pick EN +1 in the following way: Without loss of generality, assume

N

II SN IEN.L II < LaiR + SN+l/2
i-I
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(otherwise one may enlarge EN until the above inequality is satisfied). To
EN attach so many blocks of finite-dimensional subspaces Ai(N), Ai(N)+l ,...,
Ai(N)+! that for any unit vector v the projection of v onto some consecutive
pair of the Ai is no larger than SN+1/2. (The consecutive pair of the Ai of
course depends on the vector v.) Now define

The operator

SN+l = SN + aN+lPEft+l TPEtl+1

is now defined where aN+1 may now be chosen as, for example, I - L~I ai
- SN+1/2. Any unit vector v may be split into the form VI + V2 + V3 ,

where V2 is in some consecutive pair of the Ai (call them As, AS+l) with
II v2 11 < SN+l/2, VI E Vi<sCA i), and V3 E Vi>s+l (Ai)' It is easy to check that
since VI is orthogonal to v3 , SN+1(VI) is orthogonal to SN+1(V3), and SN+1(V2)

is small, then

II SN+1 II < d(T, K(lp)).

It is evident from the construction that the ai may be chosen so that
'L:I ai = I and hence

co

S = " aiPE.J.-TPEJ.L... • •
i~1

is the required operator. This completes the proof.
It was shown in [8], that for an infinite-dimensional M-ideal M and for

x $ M, then PM(x) was not compact. The following shows that a stronger
assertion holds in B(lp).

COROLLARY 1.2. For T E B(lp)\K(lp), PK(Z )(T) is not strong operator
p

compact.

Proof Let En be a sequence of finite rank projections converging strongly
to the identity I and suppose that K is a best compact operator approximant
to T. Then evidently for each n,

is also a best compact operator approximant to T and

since K(f - En) ---->. 0,

where ---->. indicates convergence in the strong operator topology.
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We now turn our attention to K(lI) in B(lI)' It is easy to see that the proof
of Theorem 1 is invalid for p = I or 00 and so the question of the proxi
minality of K(lI) in B(lI) is not immediately resolved. Nevertheless the fol
lowing may still be proved.

THEOREM 1.3. K(lI) is a proximinal subspace of B(lI)'

Proof As shown in [10, p. 220], every operator on /1 has a matricial
representation with respect to the canonical basis {ei}:1 and that

co
iff lim sup L I Ci; I ---+ 0;

n---'100 1 .
t=n

co
implies II Til = SlIP L I lij I.

, i~1

It will now be shown that d(T, K(lI)) = limn->co sup; L::n I lij I =R. Evident
ly, d(T, K(lI)) ~ R since for all C E K(ll)

co
II T - C II ~ lim SlIP L I lij - Ci; I

n---'1'X' J ,
~=n

= lim sup I I Ii; I = R.
n---'1'X! J •

l.=n

To prove the claim and the theorem, a compact operator of distance R from
Twill be produced. Now for fixedj,

set Ci; - 0 i - I, ... , 00

set Co = Ii; i = I, ... , n,

Cij = 0 i > n,

co
if I i Ii; I > R,

i~l

co
if L I Ii; I ~ R,

i~1

where n is chosen so that

co
L I Ii; - Ci; I = R.
i~1

(1.1)

(Note: In certain cases, the final nonzero Ci; might be defined as alii' 0 <
a < 1 instead of ti ; in order to satisfy (1.1)). Clearly,

en

II T - ell = S~P I It;; - Ci; I = R.
J i=l
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It remains to show that C E K(h). If C 1= K(ll) then
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00

lim sup L I Cij I ~ E
n....:,X! J .

t=n

Now pick No so that

for some E > 0.

X;

sup L I tiJ i ~ R + E/2
1 i=No

(1.2)

and select a Jo satisfying L:No I Cii, I ~ 3E/4. For this Jo L:No I tii , I ~
R + 3E/4 which contradicts (1.2). This completes the proof.

Although not an M-ideal in B(ll), K(ll) shares similar approximation
properties with M-ideals. The next proposition should be contrasted with
Theorem 3 in [8].

PROPOSITION 104. Let T E B(/l)\K(ll)' Then the set of best compact operator
approximants is infinite dimensional.

We omit the proof. It is clear from the proof of Theorem 1.3 that there are
many ways to alter the compact operator best approximant. However, in
contrast with the M-ideal case where it is known that for x E X\M (here Mis
an M-ideal and X is the ambient Banach space), span P y(x) = M, the above
proposition gives in general the strongest result as the next example demon
strates.

EXAMPLE 1.5. Let C E K(/l) be the compact operator defined as

Cli = I,

Cii = 0,

J = 1'00" 00,

otherwise.

Then d(C, span PK(z )(1» ~ 1.
1

Proof From the formulas used in Theorem 1.3, it is easily checked that if
C E PK(ll)(I) then limi~ooL:l I Cii I -+ 0. Now for C E PK(I/I), J = 1'00" n
then d(C, L;~l aiC;) ~ 1 for fixed ai i = 1'00" n and thus by the continuity
of d(C, .) the conclusion follows.

As a final remark, the following proposition should be mentioned.

PROPOSITION 1.6. There is a continuous homogeneous metric selection for
PK(zl)(-)'

Again, the proof is omitted. It follows the familiar pattern of establishing
that PK(I/') is a lower semi-continuous set-valued mapping and then ap
pealing to Michael's selection theorem.
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We now consider the case of B (loo). As mentioned in [l0, p. 220] not every
bounded linear operator on 100 has a matricial representation. This is due to
the fact that 100 does not have a basis. This leads to problems for compact
operator approximation. In particular, it appears that it is unknown whether
K(loo) is proximinal in B(loo). However a large class of operators in B(loo) do
have a matricial representation, namely, those operators which are adjoints
of operators in B(ll), hereafter denoted [B(ll»)' C B(loo). For these operators,
the following holds

THEOREM 1.7. Let TE [B(ll»)" Then T has a best compact operator
approximant.

Proof As shown in [10, p. 220], operators with such a matricial represen
tations have the properties that II Til = SUPi L~~l I tij I and that Tis compact
iff limn~oo SUPi L:;:n I tij I = O. Thus if d(T, K(loo» = d(T, [K(ll)]') then a
proof analogous to Theorem 1.3 would allow one to construct a best ap
proximant. The proof then is the same except column operations there are
now replaced by row operations. We now show that d(T, K(loo» = d(T,
[K(ll)]').

For all C E K(loo), define C I Co as C'. The following proposition will be
established, namely that

II c' 1£/- !i --.. 0 as n --.. 00.

(Here, En = V (e l , ... , en)') Now suppose II C I En-l II ? I for all n. Pick el ' E

Enl such that II C'(e/)II ? i. It will now be shown that PE C'IE 1. --.. 0 as
"1 m

m --.. 00. If this were not true one could pick a large finite set of Vi having
disjoint support and projecting back to Enl in such a manner that L::=l Vi

would have huge norm. Now pick e~ orthogonal to e~ and such that

and

Note that d(C'el , C'e2) ~ t. By continuing this process we may contradict
the compactness of C'. Hence II C' IE 1.11 --.. O. This shows that

"

d(T, K(loo» ~ lim II TIE 1.11 = d(T, [K(ll)]')
n-+oo n

and our proof is complete.
As mentioned earlier it is known that K(loo) is not an M-ideal in B(loo).

However just as in the B(ll) case, for operators in B(loo) with matricial repre
sentation, the corresponding set of best compact approximants satisfy many
of the same properties as compact approximants in B(l.,), 1 < p < 00.
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2. COMPACT OPERATOR ApPROXIMATION OF OPERATORS ON L 1
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Let (S, L, fL) be a a-finite positive measure space. In this section we in
vestigate operators on L1(S, L, fL) with range in a separable uniformly rotund
Banach space X. The main result of this section is the fact that every bounded
linear operator on L 1(S, L, fL) into X has an element of best approximation
from K(L1(S, L, I-t), X).

DEFINITION. Let B be a bounded subset in a Banach space X. The
Kuratowski measure of noncompactness a(B) of B is the greatest lower bound
of all a > 0 such that there is an a-net of B (i.e., points Xi E X, i = 1,... , n,
such that the balls B(Xi , a) cover B).

Let B be a bounded set in X. The next lemma shows that, if for m > n, An
and Am are finite a(B) + lin and a(B) + 11m-nets of B, respectively,
then Am can be chosen "close" to An .

LEMMA 2.1. Let X be a uniformly rotound Banach space. Then for every
€ > 0 there is an n E N such that for every m > n there is an a(B) + 11m-net
Am ofB with d(A n , Am) < €, where d is the Hausdorffmetric.

Proof For X E An, Y E Am denote lex, y) = B(x, a(B) + lin) n B(y,
a(B) + 11m) n B. We show that, given E > 0, there is an n E N such that
for any fixed m > n and for every x E An , Y E Am there is a y' E B(x, E) with
lex, y) C B(y', a(B) + 11m). Clearly the set of all such points y' forms a
finite a(B) + 11m-net of B with the required property.

Suppose there is an EO > 0 such that for every n E N there is an Xn E An and
a Yn E Am , m > n, with

l(xn , Yn)\B(y, a(B) + 11m) =I=- 0

for every y E B(xn , EO)' Clearly

II Xn - Yn II ;?: EO (2.1)

for each n EN. Put bn = II Yn - x n II, zn = (1 - Eo/2bn) x n + (Eo/2bn) Yn .
We have

II x n - zn II = €o/2. (2.2)

By assumption, for every n E N, there is a z~ E l(xn , Yn)\B(zn , a(B) + 11m).
Hence there are subsequences Xk , Yk , Zk , and z~ such that lim II Xk - z~ II :(:
a(B), lim II Yk - z~ II :(: a(B) and lim II Zk - z~ II ;?: a(B). It can be easily
shown that this together with (2.2) implies lim II !(Xk + Yk - 2z~)11 ;?:
a(B), which together with (2.1) contradicts the uniform rotundity of X.
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THEOREM 2.2. Let B be a bounded set in a uniformly rotund Banach space X.
Then there is a compact set K in X such that for every x E B we have
dist(x, K) :(; a(B).

Proof According to Lemma 2.1 find an nl E f\) such that for any m > nl
there is an Am with deAn ,Am) < t. Put Bl = An . Suppose that Bk = An

11k

with d(A m , An ) < tk for every m > nk has been constructed. Find an nk+1
k

such that deAn ,An ) < t k and such that for every m > nk+1 there is an
k k+l

Am with d(Am ,An ) < tk+l. Put Bk+1 = An . The set K = cl UkEN Bk has
k+l k+l

obviously the required properties. Indeed, dist(x, K) :(; a(B) for any x E B.
Further, for every kEf\) the set Bl U B2 U .. , U Bk+1 is a finite p-net of K.
It follows that K is compact.

THEOREM 2.3. Let L l = LiS, L, p,), where (S, L, p,) is a a-finite positive
measure space. If X is a separable uniformly rotound Banach space, then
K(Ll , X) is proximinal in B(Ll , X).

Proof Since B(Ll , X) = W(Ll , X), WeLl ,X) the corresponding space
of weakly compact operators, if X is a reflexive Banach space, we have only
to show that K(L l , X) is proximinal in W(L l , X).

Let TE W(Ll , X). Then, by the representation theorem VI.8.10 [2], there
exists a p,-essentially unique bounded measurable function x(t) on S into a
weakly compact subset B of X such that II Til = ess SUPSES II x(s)II . Let a(B)
be the Kuratowski measure of noncompactness of B. Obviously we have for
any compact set K C X

sup dist(x(s), K) ~ a(B).
seS

(2.3)

Let L E K(Ll , X). By Corollary VI. 8. 11 [2] there is a p,-null set E C Sand
a compact set Kl such that for the corresponding function y : S --+ X we have
yes) E Kl for every s E S\E. Hence, by (2.3), we have

II T - L I! = ess sup II xes) - y(s)11
SES

= sup II xes) - y(s)11 ~ sup II xes) - y(s)11
,<;eS SES\E

~ sup dist(x(s), Kl ) ~ a(E).
RES

(2.4)

According to Theorem 2.1 construct a compact set K2 such that for any
s E S, dist(x(s), K2) :(; a(B). For each s E S find the unique k(s) E conv K2 with
II xes) - k(s) II = dist(x(s), conv K2) :(; a(B). It can be easily shown that this
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function k: S --+ conv K2 is f-t-measurable. Let Lo be the corresponding
compact operator (Corollary VI.8.11 [2]). Then we have

II T - Lo [I = ess sup II xes) - k(s)11 .:( a.(B),
seS

which, together with (2.4), shows that L o is an element of best approximation
ofT.

3. COMPACT OPERATORS WITH RANGE IN C(S)

Let S be a compact Hausdorff space, R a closed subspace ofS, Ya Banach
space. We denote by C(S II R, Y) the space of all continuous functions on S
with values in Y, vanishing on R. If Y = IR, we use the notation C(S II R). Let
X be a Banach space. In this section we investigate the following question:
under which assumptions is K(X, C(S II R)) an· M-ideal in B(X, C(S II R))?
We give a sufficient condition and show that, for some Banach spaces X,
this condition is the best we can expect. As a consequence of this result we
obtain that compact operators on qQ, 1] into itself are not an M-ideal in the
space of bounded operators on qQ, 1] into itself.

THEOREM 3.1. If R is the set of all accumulation points of S, then K(X,
C(S II R)) is an M-ideal in B(X, C(S II R))for an arbitrary Banach space X.

Proof According to the representation theorem VI.?1 [2] B(X, C(S II R))
is isometrically isomorphic to the space Cw.(S II R, X*) of all w*-continuous
functions u : S --+ x* vanishing at R, equipped with the supremum norm, and
K(X, C(S II R)) is isometrically isomorphic to C(S II R, X*). We show that
C(S II R, X*) has the 3-balls property in Cw.(S II R, X*).

Let B(Xi , ri), i = 1,2, 3, be open balls in Cw.(S II R, X*) such that there is
an Xo E Cw.(S II R, X*) with II Xi - Wv II < ri, and such that Bi () C(S II R,
X*) oF 0, i = 1, 2, 3. Then there is an E > Q such that

ri > dist(xi , C(S II R, X*)) + 2E.

for i = 1,2,3. Choose Yi E C(S II R, X*) such that

II Xi - Yi II < dist(Xi , C(S II R, X*)) + E.

(3.1)

For every s E R there is a neighborhood U(s) such that SUPtEU(S) II y;(t)11 < E,
i = 1,2,3. Denoting V = USER U(s), we have for i = 1,2,3

sup II xi(s)11 .:( II Xi - Yi II + sup II Y;(S)II
seV seV

< dist(xi , C(S II R, X*)) + 2E < ri .
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Yo = Xo
=0

on S\V

on V.

Then Yo E C(S II R, X*) and, by (3.1), (3.2), we have for i = 1, 2, 3

II Xi - Yo II = max( sup II Xi(S) - xo(s)ll, sup II x;(s)ID < ri'
seS\ v se V

Thus C(S II R, X*) has the 3-balls property in Cw.(S II R, X*).

THEOREM 3.2. Let a Banach space X have the following property: There
is an EO> 0, So > 0, VoE X*, II Vo II < 1, UoE X*, II Uo II = 1, and a sequence
{u•.} in X* such that

(i) lim II Un II = 1,

(ii) w*-lim Un = 0,

(iii) II Un - Vo II ~ 1 - Sofor n E N,

(iv) lim 11(2 - EO) Uo + Un II :3 2 + EO'

Let there be an accumulation point of a metrizable S which is not in R. Then
K(X, C(S II R)) has not the 2-balls property, consequently, it is not an M-ideal
in B(X, C(S II R)).

Proof. Let ro be an accumulation point of S, ro ¢ R. Then there are two
disjoint sequences {an}, {tn} consisting of pairwise different points both
converging to ro' Denote M = c1 {tn }. It is easily seen that it is possible to
construct a sequence {Un} of pairwise disjoint open sets such that Sn E Un and
Un n M = 0 for every n EN. By Urysohn's lemma there is, for every
n EN a continuous functionfn, °~fn ~ 1, such thatfn(sn) = 1 andfn = °
on S\Un , and a continuous function fo, °~fo ~ 1, with fo = 1 on M U

c1 {sn} andfo = 0 on R. Choose EO' So, Vo E X*, Uo E X*, and {un} C X* such
that (i)-(iv) are fulfilled. Put

co

xo(s) = L fn(s) Un
n~l

and define

X1(s) = foes) xo(s),

x 2(s) = fo(s)«2 - EO) Uo + Xo(s)).
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xis) = .fo(s)«1 - Eo/2) Uo + Xo(S»,

Xl(S) = lo(s) Vo ,

Xl(S) = Ic(s)«2 - E() Uo + VO).
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It is easy to see that X a E B(xl , 1) n B(x2 , 1), Xl E C(S II R, X*) n B(xl , 1),
Xl E C(S II R, X*) n B(X2' 1). We show that there is no function from
C(S II R, X*) in B(Xl' 1) n B(X2' 1). Let X E B(Xl' 1) n B(X2' 1). Then
II x(sn) - (2 - EO) Uo - Un II < 1. Hence 11(2 - EO) Uo + Un II - II X(Sn) II < 1
which, together with condition (iv), implies lim sup II x(sn)11 ~ I + EO' On
the other hand we must have II X(tn) II < 1 for every n EN. Hence X cannot be
continuous at '0' Thus C(S II R, X*) has not the 2-balls property in Cwo
(S 11 R, X*). According to the representation theorem VI.7.1 [2] the same is
true for K(X, C(S II R» in B(X, C(S II R».

Remark. It may be easily verified that qo, 1] and /1 fulfil conditions
(i)-(iv) of Theorem 3.2. For C[O, 1] take, e.g.,

Un(t) = it - (i - 1)/2n,

un(l) = tn, n EN,

vo(t) = it, t E [0, 1],

uo(t) = t, t E [0, 1].

The II case is left to the reader.

t E [(i - l)ln, ijn), i = 1,... , n, n EN,

COROLLARY 3.3. K(qo, 1], qo, 1]) and K(ll' C[O, 1]) are not M-ideals
in the corresponding spaces of bounded operators.

4. OPEN PROBLEMS

During the course of these investigations certain problems arose some of
which have already been mentioned in this paper. We mention these questions
again along with a few others.

First, is K(/oo) proximinal in B(loo)? As seen earlier, a certain subclass of
operators in B(/oo) admitted best compact operator approximants but the
general question still appears open. If true, this would mean that the compact
operators were proximinal for all p, 1 ~ p ~ 00.

In the case of Lv the question of best compact operator approximation
appears again to be open. Are the compact operators proximinal in the
space of bounded linear operators on L p ? More generally, is K(L p ) an M
ideal in B(L p )?
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In the case of the compact operators on C(S), again many questions arise.
Is K(C(S)) proximinal in B(C(S))? Is there a reasonable distance formula for
dist(T, C(S)) if TE B(C(S))\K(C(S))?
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